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Introduction
The mathematical details of the algorithm used 

in obtaining the public and private keys are available at 
the RSA Web site. Briefly, the algorithm involves 
multiplying two large prime numbers (a prime number is 
a number divisible only by that number and 1) and 
through additional operations deriving a set of two 
numbers that constitutes the public key and another set 
that is the private key. Once the keys have been 
developed, the original prime numbers are no longer 
important and can be discarded. Both the public and the 
private keys are needed for encryption /decryption but 
only the owner of a private key ever needs to kno
Using the RSA system, the private key never needs to be 
sent across the Internet. The private key is used to 
decrypt text that has been encrypted with the public key. 
Thus, if I send you a message, I can find out your public 
key (but not your private key) from a central 
administrator and encrypt a message to you using your 
public key. When you receive it, you decrypt it with your 
private key. In addition to encrypting messages (which 
ensures privacy), you can authenticate yourself to me (so 
I know that it is really you who sent the message) by 
using your private key to encrypt a digital certificate. 
When I receive it, I can use your public key to decrypt it. 
A table might help us remember this. 

Fig 1.0 RSA Block Diagram 
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Abstract 
Depends on various requirements the paper presents & optimized Rivest–Shamir

processor which satisfies circuit area, operating time. we also introduces 3 multiplier based data path using different 
intermediate data forms: 1) single form, 2) semicarry-save form, and 3) carry-save form, and combined them witha 
wide variety of arithmetic components. A total of 242 datapaths for 1024-bitRSA processors were obtained for each 
radix. We can reduce the RSA runtime up to 0.24ms. As a result, the fastest design can perform the RSA operation 

ASIC implementation, high-radix Montgomery multiplication, RSA.      

The mathematical details of the algorithm used 
in obtaining the public and private keys are available at 

site. Briefly, the algorithm involves 
multiplying two large prime numbers (a prime number is 
a number divisible only by that number and 1) and 
through additional operations deriving a set of two 
numbers that constitutes the public key and another set 

is the private key. Once the keys have been 
developed, the original prime numbers are no longer 
important and can be discarded. Both the public and the 
private keys are needed for encryption /decryption but 
only the owner of a private key ever needs to know it. 
Using the RSA system, the private key never needs to be 
sent across the Internet. The private key is used to 
decrypt text that has been encrypted with the public key. 
Thus, if I send you a message, I can find out your public 

key) from a central 
administrator and encrypt a message to you using your 
public key. When you receive it, you decrypt it with your 
private key. In addition to encrypting messages (which 
ensures privacy), you can authenticate yourself to me (so 

t it is really you who sent the message) by 
using your private key to encrypt a digital certificate. 
When I receive it, I can use your public key to decrypt it. 

 
 

RSA is an Internet 
authentication system that uses an 
in 1977 by Ron Rivest, Adi Shamir, and Leonard 
Adleman. The RSA algorithm is the most commonly 
used encryption and authentication algorithm and is 
included as part of the Web browser
Netscape. It's also part of Lotus 
and many other products. The encryption system is 
owned by RSA Security. The company licenses the 
algorithm technologies and also sells development kits. 
The technologies are part of existin
Internet, and computing standards.
the Montgomery algorithm (henceforth referred to as a 
"Montgomery step") is faster than a "naive" modular 
multiplication: 

Because numbers have to be converted to and from a 
particular form suitable for performing the Montgomery 
step, a single modular multiplication performed using a 
Montgomery step is actually slightly less efficient than a 
"naive" one. However, modular exponentiation can be 
implemented as a sequence of Montgomer
conversion only required once at the start and once at the 
end of the sequence. In this case the greater speed of the 
Montgomery steps far outweighs the need for the extra 
conversions. Working with n-digit numbers to base 
Montgomery step 

. The base 
2 for microelectronic applications or 2
software applications. For the purpose of exposition, we 
shall illustrate with d = 10 and n =
To calculate 0472 × a ÷ 10000: 

1. Zero the accumulator.  
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bitRSA processors were obtained for each 
st design can perform the RSA operation 

RSA is an Internet encryption and 
authentication system that uses an algorithm developed 
in 1977 by Ron Rivest, Adi Shamir, and Leonard 
Adleman. The RSA algorithm is the most commonly 
used encryption and authentication algorithm and is 

browsers from Microsoft and 
Netscape. It's also part of Lotus Notes, Intuit's Quicken, 
and many other products. The encryption system is 
owned by RSA Security. The company licenses the 
algorithm technologies and also sells development kits. 
The technologies are part of existing or proposed Web, 
Internet, and computing standards.A single application of 
the Montgomery algorithm (henceforth referred to as a 
"Montgomery step") is faster than a "naive" modular 

 
Because numbers have to be converted to and from a 

icular form suitable for performing the Montgomery 
step, a single modular multiplication performed using a 
Montgomery step is actually slightly less efficient than a 
"naive" one. However, modular exponentiation can be 
implemented as a sequence of Montgomery steps, with 
conversion only required once at the start and once at the 
end of the sequence. In this case the greater speed of the 
Montgomery steps far outweighs the need for the extra 

digit numbers to base d, a 
 calculates 

. The base d is typically 
2 for microelectronic applications or 232 or 264 for 
software applications. For the purpose of exposition, we 

= 4. 
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2. Starting from the last digit; add 2a to the 
accumulator.  

3. Shift the accumulator one place to the right 
(thus dividing by 10).  

4. Add 7a to the accumulator.  
5. Shift the accumulator one place to the right.  
6. Add 4a to the accumulator.  
7. Shift the accumulator one place to the right.  
8. Add 0a to the accumulator.  
9. Shift the accumulator one place to the right.  
It is easy to see that the result is 0.0472 × a, as 

required. To turn this into a modular operation with a 
modulus r, add, immediately before each shift, whatever 
multiple of r is needed to make the value in the 
accumulator a multiple of 10. The result will be that the 
final value in the accumulator will be an integer (since 
only multiples of 10 have ever been divided by 10) and 
equivalent (modulo r) to 472 × a ÷ 10000. Finding the 
appropriate multiple of r is a simple operation of single-
digit arithmetic. When working to base 2, it is trivial to 
calculate: if the value in the accumulator is even, the 
multiple is 0 (nothing needs to be added); if the value in 
the accumulator is odd, the multiple is 1 (r needs to be 
added). The Montgomery step is faster than the methods 
of "naive" modular arithmetic because the decision as to 
what multiple of r to add is taken purely on the basis of 
the least significant digit of the accumulator. This allows 
the use of carry-save adders, which are much faster than 
the conventional kind but are not immediately able to 
give accurate values for the more significant digits of the 
result. Working with n-digit numbers to base d, a 
Montgomery step 

calculates . The base d is 
typically 2 for microelectronic applications or 232 or 264 
for software applications. For the purpose of exposition, 
we shall illustrate with d = 10 and n = 4.To turn this into 
a modular operation with a modulus r, add, immediately 
before each shift, whatever multiple of r is needed to 
make the value in the accumulator a multiple of 10. The 
result will be that the final value in the accumulator will 
be an integer (since only multiples of 10 have ever been 
divided by 10) and equivalent (modulo r) to 472 × a ÷ 
10000. Finding the appropriate multiple of r is a simple 
operation of single-digit arithmetic. When working to 
base 2, it is trivial to calculate: if the value in the 
accumulator is even, the multiple is 0 (nothing needs to 
be added); if the value in the accumulator is odd, the 
multiple is 1 (r needs to be added). The Montgomery 
step is faster than the methods of "naive" modular 
arithmetic because the decision as to what multiple of r 
to add is taken purely on the basis of the least significant 
digit of the accumulator. This allows the use of carry-
save adders, which are much faster than the conventional 

kind but are not immediately able to give accurate values 
for the more significant digits of the result.The 
encryption/decryption process usually requires a large 
amount ofarithmetic operations with very large operands. 
In particular,Rivest–Shamir–Adleman (RSA) 
cryptosystem [1] usually performsmodular 
exponentiation using operands longer than 1000bits. 
Modular exponentiation is performed by repeating 
modularmultiplication and squaring operations, and thus 
optimization ofmodular multiplication is essential in 
order to achieve high-performance RSA cryptosystem 
designs. The Montgomery multiplication algorithm [2], 
which does not require trial division, is widely used for 
practical hardware and software implementations 
because of its high speed capability.Many omputational 
techniques and hardware architectureshave been 
proposed for Montgomery multiplication [3]–[11]. 
Among them, the radix-2 algorithms proposed in [3] and 
[4] areprimarily implemented with long -bit adders to 
scan the -bitoperand bit-by-bit in a straightforward 
manner. Hardware architectureshave large fan-out 
signals and large wire delays for longoperands. These 
drawbacks can be reduced by systolic array 
architectures[6], [7] with multiple operation units. 
However, these architectures are usually tailored for 
fixed-precision computations and cannot respond 
flexibly to changes in operand size. To deal with 
variable-length data, a radix-2 architecture was proposed 
[8]–[10] in which a -bit operand is divided into -bit word 
blocks, and -bit addition is performed by repeating –bit 
addition times. These radix-2 architectures are quite 
simple, but have difficulty in improving the 
performances of circuit area and efficiency. A high-radix 
architecture using a 64-bit 64-bitmultiplier was proposed 
in [11] to achieve higher circuit efficiency.  
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Fig 1.1 RSA Processor architecture 
 

The performance of such a multiplier-based 
architecture depends heavily on the datapath structure, 
and varies with the structure of the arithmetic 
components, but previous papers have focused on 
designing their own architectures. These architectures are 
optimized for some design parameters, such assize and 
speed, while the most suitable design point in practical 
use varies depending on the application and the user 
quirements.Therefore, in order to provide the best design 
which satisfies these requirements, a systematic study 
considering the entire process of design from the 
datapath architecture level to the arithmetic-component 
level is indispensable from a practicalstandpoint.On the 
other hand, cryptanalysis based on side-channel 
information is a major concern for hardware designers. 
When a cryptographic module performs encryption or 
decryption, secret parameters related to the intermediate 
data being processed can leak as side-channel 
information in the form of power dissipation, 
electromagnetic radiation, or operating time. Among 
them,two of the best known attacks are simple power 
analysis (SPA)and differential power analysis 
(DPA).Many important cryptosystems such as RSA and 
DSA are based on arithmetic operations, such as 
multiplications, modulo a large number. The classical 
method of calculating a modular product involves first 
multiplying the numbers as if they were  and then taking 
the modulo of the result. However, modular reduction is 
very expensive computationally—equivalent to dividing 
two numbers. The situation is even worse when the 
algorithm requires modular exponentiation. However, the 
performance of RSA processors with such 
countermeasures has not been fully evaluated in previous 
work. This paper proposes a systematic design of RSA 
processors combining various datapath architectures and 
exponentiation algorithms (i.e., sequences) for 
performance and resistance against side-channel attacks, 
respectively. This systematic approach is divided into 
four design stages: 1) algorithm design; 2)radix design; 
3) architecture design; and 4) arithmetic-component 
design. We first select a modular exponentiation 
algorithm considering the tradeoff between the RSA 
computation time and tamper resistance. We then select 
the radix to determine the basic characteristics of the 
processor, such as circuit area and operation frequency 
(i.e., critical path). Finally, we adopt the datapath 
architecture and the arithmetic components to optimize 
the circuit performance. 
High-Radix Montgomery Multiplier 
A. Montgomery multiplication algorithm 

Given two large integers X and Y, the Montgomery 
multiplication algorithm performs the following 
operation: 

                                     mod N, (1) 
where R = 2k and the modulus N is an integer in the 
range 2n¡1 < N < 2n such that gcd(R,N) = 1. 
 For cryptographic applications, N is usually a prime 
number or a product of primes, and thus satisfies the 
condition easily. In addition, the k-bit integers X, Y, R, 
and N satisfy the following condition: 0 · X,Y < N < 2k = 
R. (2)   
ALGORITHM 1   shows the original Montgomery 
multiplication algorithm [1], which replaces a modular 
division by-N with a k-bit right shift operation. Equation 
(1) can This paper describes an algorithm and 
architecture based on an extension of a scalable radix-2 
architecture proposed in a previous work. The algorithm 
is proven to be correct and the hardware design is 
discussed in detail. Experimental results are shown to 
compare a radix-8 implementation with a radix-2 design. 
The scalable Montgomery multiplier is adjustable to 
constrained areas yet being able to work on any given 
precision of the operands. Similar to some systolic 
implementations, this design avoid the high load on 
signals that broadcast to several components, making the 
delay independent of operand’s precision. 
b) High-radix Word-based Montgomery Algorithm 

The notation used throughout this text is shown 
in Table 1. Figure 1 shows the Multiple-word High-
Radix (2k) Montgomery Multiplication algorithm 
(MWR2kMM), a generalization of the MM algorithm 
presented in.A full-precision High-Radix Montgomery 
algorithm has been presented BNand proven to be correct 
in [8]. To prove correctness of the algorithm in Figure 1 
we show that it is equivalent to the one presented in [8]. 

 
 
c) High-radix Montgomery Multiplier - System level 

For high-precision computation it is beneficial 
to divide the multiplicand Y , the modulus M and the 
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result S into words [18]. The approach keeps the gates 
and the wire delays inside reasonable boundaries. With 
operands’ precision of thousands of bits, a conventional 
design to multiply all the bits at once would have a high 
number of pins, increased fan-in for the gates, high gate 
loads, and gate outputs driving long wires. The 
multiplications (qY ∗ Y )(∗) and (qM ∗ M)(∗) shown in 
the MWR2Kmm algorithm can be implemented by 
multiplexers (MUXes) and adders. The shifting operation 
in Step 10 is simple in hardware. Additions can be done 
using Carry-  Save Adders (CSA), and keeping S in 
redundant form. With this approach the carries generated 
during addition are not propagated but rather stored in a 
separate bit-vector along with a bit-vector for the sum 
bits. The most complex operations of finding the 
coefficients qY and qM (steps 3 and 5) can be executed 
by table look-up. qY is pre-computed before the 
computational cycle begins since it depends only on the 
least significant k bits of X. This observation leaves the 
computation of qM in the most critical part of the 
algorithm as it is also pointed out by other authors. The 
architecture of a Montgomery multiplier implementing 
the MWR2kMMalgorithm is shown in Fig. 3. There are 
two main functional blocks: Kernel and IO. Only the data 
path is shown. The Kernel’s data path is where the 
computation takes place according to the algorithm. A 
control block (not shown) supplies the signals to 
synchronize the system. 

 
Fig 2.0 System level diagram of modulator multiplier 

 
Conclusion 

Modular exponentiation architecture was 
derived that combines a high radix version of 
Montgomery’s algorithm with novel systolic array 
architecture. The design was optimized for modern 
FPGAs. For an optimal speed area trade–off a radix of 16 
was chosen. We showed that it is possible to implement 
1024–bit modular exponentiation on a single 
commercially available FPGA. 1024–bit RSA is 
performed in 3.1 ms using a clock rate of 45.6 MHz and 
an area of 6826 CLB’s on a Xilinx XC40250XV, speed 
grade -09. These performances are better than all 
previously reported implementations presented in 

technical literature. As a result A total of 242 datapaths 
for 1024-bitRSA processors were obtained for each 
radix. We can reduce the RSA runtime up to 0.24ms. As 
a result, the fastest design can perform the RSA 
operation in less than 1.0 ms. 
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