
[Prabha, 2(11): November, 2013

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

IJESRT

INTERNATIONAL JOURNA

Reducing Runtime of RSA Processors Based On High

 Depends on various requirements the paper presents & optimized Rivest
processor which satisfies circuit area, operating time. we also introduces 3 multiplier based data path using different
intermediate data forms: 1) single form, 2)
wide variety of arithmetic components. A total of 242 datapaths for 1024
radix. We can reduce the RSA runtime up to 0.24ms. As a result, the faste
in less than 1.0 ms.

Keywords: ASIC implementation, high

Introduction
The mathematical details of the algorithm used

in obtaining the public and private keys are available at
the RSA Web site. Briefly, the algorithm involves
multiplying two large prime numbers (a prime number is
a number divisible only by that number and 1) and
through additional operations deriving a set of two
numbers that constitutes the public key and another set
that is the private key. Once the keys have been
developed, the original prime numbers are no longer
important and can be discarded. Both the public and the
private keys are needed for encryption /decryption but
only the owner of a private key ever needs to kno
Using the RSA system, the private key never needs to be
sent across the Internet. The private key is used to
decrypt text that has been encrypted with the public key.
Thus, if I send you a message, I can find out your public
key (but not your private key) from a central
administrator and encrypt a message to you using your
public key. When you receive it, you decrypt it with your
private key. In addition to encrypting messages (which
ensures privacy), you can authenticate yourself to me (so
I know that it is really you who sent the message) by
using your private key to encrypt a digital certificate.
When I receive it, I can use your public key to decrypt it.
A table might help us remember this.

Fig 1.0 RSA Block Diagram

2013] ISSN: 2277
 Impact Factor: 1.852

International Journal of Engineering Sciences & Research Technology
[3214-3218]

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH
TECHNOLOGY

Reducing Runtime of RSA Processors Based On High-Radix Montgomery
Multipliers

Prabha N.
nprabha1234@gmail.com

Abstract
Depends on various requirements the paper presents & optimized Rivest–Shamir

processor which satisfies circuit area, operating time. we also introduces 3 multiplier based data path using different
intermediate data forms: 1) single form, 2) semicarry-save form, and 3) carry-save form, and combined them witha
wide variety of arithmetic components. A total of 242 datapaths for 1024-bitRSA processors were obtained for each
radix. We can reduce the RSA runtime up to 0.24ms. As a result, the fastest design can perform the RSA operation

ASIC implementation, high-radix Montgomery multiplication, RSA.

The mathematical details of the algorithm used
in obtaining the public and private keys are available at

site. Briefly, the algorithm involves
multiplying two large prime numbers (a prime number is
a number divisible only by that number and 1) and
through additional operations deriving a set of two
numbers that constitutes the public key and another set

is the private key. Once the keys have been
developed, the original prime numbers are no longer
important and can be discarded. Both the public and the
private keys are needed for encryption /decryption but
only the owner of a private key ever needs to know it.
Using the RSA system, the private key never needs to be
sent across the Internet. The private key is used to
decrypt text that has been encrypted with the public key.
Thus, if I send you a message, I can find out your public

key) from a central
administrator and encrypt a message to you using your
public key. When you receive it, you decrypt it with your
private key. In addition to encrypting messages (which
ensures privacy), you can authenticate yourself to me (so

t it is really you who sent the message) by
using your private key to encrypt a digital certificate.
When I receive it, I can use your public key to decrypt it.

RSA is an Internet
authentication system that uses an
in 1977 by Ron Rivest, Adi Shamir, and Leonard
Adleman. The RSA algorithm is the most commonly
used encryption and authentication algorithm and is
included as part of the Web browser
Netscape. It's also part of Lotus
and many other products. The encryption system is
owned by RSA Security. The company licenses the
algorithm technologies and also sells development kits.
The technologies are part of existin
Internet, and computing standards.
the Montgomery algorithm (henceforth referred to as a
"Montgomery step") is faster than a "naive" modular
multiplication:

Because numbers have to be converted to and from a
particular form suitable for performing the Montgomery
step, a single modular multiplication performed using a
Montgomery step is actually slightly less efficient than a
"naive" one. However, modular exponentiation can be
implemented as a sequence of Montgomer
conversion only required once at the start and once at the
end of the sequence. In this case the greater speed of the
Montgomery steps far outweighs the need for the extra
conversions. Working with n-digit numbers to base
Montgomery step

. The base
2 for microelectronic applications or 2
software applications. For the purpose of exposition, we
shall illustrate with d = 10 and n =
To calculate 0472 × a ÷ 10000:

1. Zero the accumulator.

ISSN: 2277-9655
Impact Factor: 1.852

International Journal of Engineering Sciences & Research Technology

ENCES & RESEARCH

Radix Montgomery

Shamir–Adleman (RSA)
processor which satisfies circuit area, operating time. we also introduces 3 multiplier based data path using different

save form, and combined them witha
bitRSA processors were obtained for each
st design can perform the RSA operation

RSA is an Internet encryption and
authentication system that uses an algorithm developed
in 1977 by Ron Rivest, Adi Shamir, and Leonard
Adleman. The RSA algorithm is the most commonly
used encryption and authentication algorithm and is

browsers from Microsoft and
Netscape. It's also part of Lotus Notes, Intuit's Quicken,
and many other products. The encryption system is
owned by RSA Security. The company licenses the
algorithm technologies and also sells development kits.
The technologies are part of existing or proposed Web,
Internet, and computing standards.A single application of
the Montgomery algorithm (henceforth referred to as a
"Montgomery step") is faster than a "naive" modular

Because numbers have to be converted to and from a

icular form suitable for performing the Montgomery
step, a single modular multiplication performed using a
Montgomery step is actually slightly less efficient than a
"naive" one. However, modular exponentiation can be
implemented as a sequence of Montgomery steps, with
conversion only required once at the start and once at the
end of the sequence. In this case the greater speed of the
Montgomery steps far outweighs the need for the extra

digit numbers to base d, a
 calculates

. The base d is typically
2 for microelectronic applications or 232 or 264 for
software applications. For the purpose of exposition, we

= 4.

[Prabha, 2(11): November, 2013] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology
[3214-3218]

2. Starting from the last digit; add 2a to the
accumulator.

3. Shift the accumulator one place to the right
(thus dividing by 10).

4. Add 7a to the accumulator.
5. Shift the accumulator one place to the right.
6. Add 4a to the accumulator.
7. Shift the accumulator one place to the right.
8. Add 0a to the accumulator.
9. Shift the accumulator one place to the right.
It is easy to see that the result is 0.0472 × a, as

required. To turn this into a modular operation with a
modulus r, add, immediately before each shift, whatever
multiple of r is needed to make the value in the
accumulator a multiple of 10. The result will be that the
final value in the accumulator will be an integer (since
only multiples of 10 have ever been divided by 10) and
equivalent (modulo r) to 472 × a ÷ 10000. Finding the
appropriate multiple of r is a simple operation of single-
digit arithmetic. When working to base 2, it is trivial to
calculate: if the value in the accumulator is even, the
multiple is 0 (nothing needs to be added); if the value in
the accumulator is odd, the multiple is 1 (r needs to be
added). The Montgomery step is faster than the methods
of "naive" modular arithmetic because the decision as to
what multiple of r to add is taken purely on the basis of
the least significant digit of the accumulator. This allows
the use of carry-save adders, which are much faster than
the conventional kind but are not immediately able to
give accurate values for the more significant digits of the
result. Working with n-digit numbers to base d, a
Montgomery step

calculates . The base d is
typically 2 for microelectronic applications or 232 or 264
for software applications. For the purpose of exposition,
we shall illustrate with d = 10 and n = 4.To turn this into
a modular operation with a modulus r, add, immediately
before each shift, whatever multiple of r is needed to
make the value in the accumulator a multiple of 10. The
result will be that the final value in the accumulator will
be an integer (since only multiples of 10 have ever been
divided by 10) and equivalent (modulo r) to 472 × a ÷
10000. Finding the appropriate multiple of r is a simple
operation of single-digit arithmetic. When working to
base 2, it is trivial to calculate: if the value in the
accumulator is even, the multiple is 0 (nothing needs to
be added); if the value in the accumulator is odd, the
multiple is 1 (r needs to be added). The Montgomery
step is faster than the methods of "naive" modular
arithmetic because the decision as to what multiple of r
to add is taken purely on the basis of the least significant
digit of the accumulator. This allows the use of carry-
save adders, which are much faster than the conventional

kind but are not immediately able to give accurate values
for the more significant digits of the result.The
encryption/decryption process usually requires a large
amount ofarithmetic operations with very large operands.
In particular,Rivest–Shamir–Adleman (RSA)
cryptosystem [1] usually performsmodular
exponentiation using operands longer than 1000bits.
Modular exponentiation is performed by repeating
modularmultiplication and squaring operations, and thus
optimization ofmodular multiplication is essential in
order to achieve high-performance RSA cryptosystem
designs. The Montgomery multiplication algorithm [2],
which does not require trial division, is widely used for
practical hardware and software implementations
because of its high speed capability.Many omputational
techniques and hardware architectureshave been
proposed for Montgomery multiplication [3]–[11].
Among them, the radix-2 algorithms proposed in [3] and
[4] areprimarily implemented with long -bit adders to
scan the -bitoperand bit-by-bit in a straightforward
manner. Hardware architectureshave large fan-out
signals and large wire delays for longoperands. These
drawbacks can be reduced by systolic array
architectures[6], [7] with multiple operation units.
However, these architectures are usually tailored for
fixed-precision computations and cannot respond
flexibly to changes in operand size. To deal with
variable-length data, a radix-2 architecture was proposed
[8]–[10] in which a -bit operand is divided into -bit word
blocks, and -bit addition is performed by repeating –bit
addition times. These radix-2 architectures are quite
simple, but have difficulty in improving the
performances of circuit area and efficiency. A high-radix
architecture using a 64-bit 64-bitmultiplier was proposed
in [11] to achieve higher circuit efficiency.

[Prabha, 2(11): November, 2013] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology
[3214-3218]

Fig 1.1 RSA Processor architecture

The performance of such a multiplier-based
architecture depends heavily on the datapath structure,
and varies with the structure of the arithmetic
components, but previous papers have focused on
designing their own architectures. These architectures are
optimized for some design parameters, such assize and
speed, while the most suitable design point in practical
use varies depending on the application and the user
quirements.Therefore, in order to provide the best design
which satisfies these requirements, a systematic study
considering the entire process of design from the
datapath architecture level to the arithmetic-component
level is indispensable from a practicalstandpoint.On the
other hand, cryptanalysis based on side-channel
information is a major concern for hardware designers.
When a cryptographic module performs encryption or
decryption, secret parameters related to the intermediate
data being processed can leak as side-channel
information in the form of power dissipation,
electromagnetic radiation, or operating time. Among
them,two of the best known attacks are simple power
analysis (SPA)and differential power analysis
(DPA).Many important cryptosystems such as RSA and
DSA are based on arithmetic operations, such as
multiplications, modulo a large number. The classical
method of calculating a modular product involves first
multiplying the numbers as if they were and then taking
the modulo of the result. However, modular reduction is
very expensive computationally—equivalent to dividing
two numbers. The situation is even worse when the
algorithm requires modular exponentiation. However, the
performance of RSA processors with such
countermeasures has not been fully evaluated in previous
work. This paper proposes a systematic design of RSA
processors combining various datapath architectures and
exponentiation algorithms (i.e., sequences) for
performance and resistance against side-channel attacks,
respectively. This systematic approach is divided into
four design stages: 1) algorithm design; 2)radix design;
3) architecture design; and 4) arithmetic-component
design. We first select a modular exponentiation
algorithm considering the tradeoff between the RSA
computation time and tamper resistance. We then select
the radix to determine the basic characteristics of the
processor, such as circuit area and operation frequency
(i.e., critical path). Finally, we adopt the datapath
architecture and the arithmetic components to optimize
the circuit performance.
High-Radix Montgomery Multiplier
A. Montgomery multiplication algorithm

Given two large integers X and Y, the Montgomery
multiplication algorithm performs the following
operation:

 mod N, (1)
where R = 2k and the modulus N is an integer in the
range 2n¡1 < N < 2n such that gcd(R,N) = 1.
 For cryptographic applications, N is usually a prime
number or a product of primes, and thus satisfies the
condition easily. In addition, the k-bit integers X, Y, R,
and N satisfy the following condition: 0 · X,Y < N < 2k =
R. (2)
ALGORITHM 1 shows the original Montgomery
multiplication algorithm [1], which replaces a modular
division by-N with a k-bit right shift operation. Equation
(1) can This paper describes an algorithm and
architecture based on an extension of a scalable radix-2
architecture proposed in a previous work. The algorithm
is proven to be correct and the hardware design is
discussed in detail. Experimental results are shown to
compare a radix-8 implementation with a radix-2 design.
The scalable Montgomery multiplier is adjustable to
constrained areas yet being able to work on any given
precision of the operands. Similar to some systolic
implementations, this design avoid the high load on
signals that broadcast to several components, making the
delay independent of operand’s precision.
b) High-radix Word-based Montgomery Algorithm

The notation used throughout this text is shown
in Table 1. Figure 1 shows the Multiple-word High-
Radix (2k) Montgomery Multiplication algorithm
(MWR2kMM), a generalization of the MM algorithm
presented in.A full-precision High-Radix Montgomery
algorithm has been presented BNand proven to be correct
in [8]. To prove correctness of the algorithm in Figure 1
we show that it is equivalent to the one presented in [8].

c) High-radix Montgomery Multiplier - System level

For high-precision computation it is beneficial
to divide the multiplicand Y , the modulus M and the

[Prabha, 2(11): November, 2013] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology
[3214-3218]

result S into words [18]. The approach keeps the gates
and the wire delays inside reasonable boundaries. With
operands’ precision of thousands of bits, a conventional
design to multiply all the bits at once would have a high
number of pins, increased fan-in for the gates, high gate
loads, and gate outputs driving long wires. The
multiplications (qY ∗ Y)(∗) and (qM ∗ M)(∗) shown in
the MWR2Kmm algorithm can be implemented by
multiplexers (MUXes) and adders. The shifting operation
in Step 10 is simple in hardware. Additions can be done
using Carry- Save Adders (CSA), and keeping S in
redundant form. With this approach the carries generated
during addition are not propagated but rather stored in a
separate bit-vector along with a bit-vector for the sum
bits. The most complex operations of finding the
coefficients qY and qM (steps 3 and 5) can be executed
by table look-up. qY is pre-computed before the
computational cycle begins since it depends only on the
least significant k bits of X. This observation leaves the
computation of qM in the most critical part of the
algorithm as it is also pointed out by other authors. The
architecture of a Montgomery multiplier implementing
the MWR2kMMalgorithm is shown in Fig. 3. There are
two main functional blocks: Kernel and IO. Only the data
path is shown. The Kernel’s data path is where the
computation takes place according to the algorithm. A
control block (not shown) supplies the signals to
synchronize the system.

Fig 2.0 System level diagram of modulator multiplier

Conclusion

Modular exponentiation architecture was
derived that combines a high radix version of
Montgomery’s algorithm with novel systolic array
architecture. The design was optimized for modern
FPGAs. For an optimal speed area trade–off a radix of 16
was chosen. We showed that it is possible to implement
1024–bit modular exponentiation on a single
commercially available FPGA. 1024–bit RSA is
performed in 3.1 ms using a clock rate of 45.6 MHz and
an area of 6826 CLB’s on a Xilinx XC40250XV, speed
grade -09. These performances are better than all
previously reported implementations presented in

technical literature. As a result A total of 242 datapaths
for 1024-bitRSA processors were obtained for each
radix. We can reduce the RSA runtime up to 0.24ms. As
a result, the fastest design can perform the RSA
operation in less than 1.0 ms.

[Prabha, 2(11): November, 2013] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology
[3214-3218]

References

[1] P. Montgomery, “Modular multiplication
without trial division,” Mathematics of
Computation, vol. 44, pp. 519–21, April 1985.

[2] J. Vuillemin, P. Bertin, D. Roncin, M. Shand,
H. Touati, and P. Boucard, “Programmable
active memories: Reconfigurable systems come
of age,” IEEE Transactions on VLSI Systems,
vol. 4, pp. 56–69, Mar 1996.

[3] M. Shand and J. Vuillemin, “Fast
implementations of RSA cryptography,” in
Proceedings 11th IEEE Symposium on
Computer Arithmetic, pp. 252–259, 1993.12

[4] S. E. Eldridge and C. D. Walter, “Hardware
implementation of Montgomery’s modular
multiplication algorithm,” IEEE Transactions on
Computers, vol. 42, pp. 693–699, July 1993.

[5] H.Orup, “Simplifying quotient determination in
high-radix modular multiplication,” in
Proceedings 12th Symposium on Computer
Arithmetic, pp. 193–9, 1995.

[6] P. Kornerup, “A systolic, linear-array multiplier
for a class of right-shift algorithms,” IEEE
Transactions on Computers, vol. 43, pp. 892–8,
August 1994.

[7] C. K. Koc, T. Acar, and B. Kaliski, “Analyzing
and comparing Montgomery multiplication
algorithms,” IEEE Micro, vol. 16, pp. 26–33,
June 1996.

[8] T. Blum and C. Paar, “Montgomery modular
exponentiation on reconfigurable hardware,” in
Proceedings 14th Symposium on Computer
Arithmetic, pp. 70–7, 1999.

[9] Xilinx, Inc., San Jose, CA, The Programmable
Logic Data Book, 1996.

[10] T. Blum, “Modular exponentiation on
reconfigurable hardware,” Master’s thesis, ECE
Dept., Worcester Polytechnic Institute,
Worcester, USA, May 1999.

[Prabha, 2(11): November, 2013] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology
[3214-3218]

[11] P. Alfke, “Xilinx M1 Timing Parameters.”
Electronic Mail Personal Correspondence,
December 1999.

[12] R. Rivest, A. Shamir, and L. Adleman, “A
method for obtaining digital signatures and
public key cryptosystems,” Communications of
the ACM, vol. 21, pp. 120–6, Feb. 1978.

[13] D. Knuth, The Art of Computer Programming.
Volume 2: Seminumerical Algorithms. Reading,
Massachusetts: Addison-Wesley, 2nd ed., 1981.

[14] J. Quisquater and C. Couvreur, “Fast
decipherment algorithm for RSA public–key
cryptosystem,” Electronics Letters, vol. 18, pp.
905–7, October 1982.

[15] E. D. Win, S. Mister, B. Preneel, and M.
Wiener, “On the performance of signature
schemes based on elliptic

